CS 4530: Fundamentals of Software Engineering

Module 03: Test Adequacy

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

When have I written
enough tests?

Module Outline

* Lesson 3.1 Writing tests for TDD
* Lesson 3.2 Assessing Test Coverage
* Lesson 3.3 Adversarial Coverage Testing

Learning Objectives for this Module

* By the end of this lesson, you should be able to:

* Explain different reasons why you might want to test

* Design a TDD test suite by identifying equivalence classes
of inputs

* Explain the following measures of code coverage, and how
they differ:

e Statement or line coverage
* Branch coverage

* Path coverage

* Use mutation testing to judge the completeness of a test
suite

Why do we test?

* Test Driven Development

* Does the SUT satisfy its specification?

* “Good” test suite exercises the entire specification

* Regression Testing

* Did something change since some previous version?
* Prevent bugs from (re-)entering during maintenance.
* “Good” test suite detects bugs that we introduce in code

* Acceptance Testing

* Does the SUT satisfy the customer
* “Good” test suite answers: Are we building the right system ?

CS 4530: Fundamentals of Software Engineering

Lesson 3.1 Writing tests for TDD

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

What makes for a good test (suite)?

* Desirable properties of test suites:
* Find bugs
* Run automatically
* Are relatively cheap to run

* Don't depend on the order of tests.

* Desirable properties of individual tests: Related Termivology:

 Understandable and debuggable “test simells”

* No false alarms (not “flaky”)

Building Tests from Specifications
(TDD)

* The real specification is often implicit.

* When delivering a feature, it is important to deliver tests to
ensure that the feature keeps working this way in the future

* You may have specific domain knowledge that future
developers who touch the code do not

* Specifications are hard to interpret and check, automated
tests are easy

* Beyoncé rule: “If you liked it you should have put a firg test
on it” (SoftEng @ Google)

Building Test Suites From Specifications (TDD)

* First task is to enumerate the different classes of behaviors in the
specification.

* Example:

* Requesting the transcript for a student ID.
These cases are sometimes

called "equivalence classes”
* The ID belongs to a student of inputs.

* TWO cases:

* The ID is not the ID of any student
* The SUT should work similarly for all inputs in each case.

Example: Zip Code Lookup (1)

* USPS ZIP code lookup tool accepts a zip code g=yuvrep srares
. POSTAL SERVICE.
as input, and outputs:

* The “place names” that correspond to that
ZIP code, or

* “Invalid zip code”

Find a list of clties that are in a ZIP Code.

* Strategy:

* Required Fields

* Determine the input equivalence classes, - ZIP Code 12345
boundary conditions

* Write tests for those inputs Subamit >

10

Zip Code Lookup (2): Need to test all feasible
Inputs

* Need to test behavior when the input is:
e Nota 5 digit number All possible inputs

* A5 digit numbers

* Avalid ZIP code

* With one place name

All 5 digit numbers

Valid ZIP codes

* With multiple place names
* Not a valid ZIP code

* Test at least one input from each class, plus boundaries
(e.g. 4 digit numbers, 6 digit numbers, no numbers)

* Encode the expected output of the system for each test

11

What does "all possible inputs” mean?

* Should we also test with non-numeric
inputs? With an empty input? With an input
that isn't even a string?

* Do we have to worry about the database
going down?

* All this depends on what we can assume
about the system in which the lookup tool is

embedded.

All possible inputs

All 5 digit numbers

Valid ZIP codes

12

Cases for looking something up in a list

1. The list is empty

. The thing you want is not in the list

. The thing you want is the first thing in the list
. The thing you want is the last thing in the list

o b W N

. The thing you want is in the middle of the list

Example:

// find the first item in the list that 1s

// greater than or equal to the target.

// throw an error 1if none.

export default function search(list:number[], target:number) {
// NEED TO TEST WHAT GOES HERE

}

. The list is empty

The thing you want is not in the list

The thing you want is the first thing in the list
The thing you want is the last thing in the list

I

. The thing you want is in the middle of the list

Example: TicTacToe

* What are the possible states of a tictactoe game?
* Board is full (draw)
* Board is not full
* Board not full, one player has won
 Board not full, your turn
* Board not full, the other person's turn
 What are the possible inputs to the tictactoe game?
* YOou move
* The other player moves
* Someone else tries to move
* One of the players leaves the game

Make sure you've covered the edge cases

* Test at and near boundaries
* Barely legal, barely illegal inputs
* Less-than or less-than-or-equal?
* Empty inputs?
* Integer overflows / buffer overflows
 Example: ComAir crew scheduling

* problem due to a list getting more than 32767
elements

* https://arstechnica.com/uncategorized/2004/12/449
0-2/

16

https://arstechnica.com/uncategorized/2004/12/4490-2/
https://arstechnica.com/uncategorized/2004/12/4490-2/

But don't make unwarranted assumptions
about the specification

* Specifications often leave room for undefined behaviors: details
that are subject to change

* Brittle tests are tests that will fail unexpectedly if that
undefined behavior changes

 Example: Imagine if specification for our Transcript database did
not say anything about adding students with same names.

17

Example: Is this particular error message
required, or iIs it incidental?

test("should throw an error if no such item", () => {
const list = [1, 2, 3];
const target = 4;
expect(search(list, target)).toThrowError("No such item");

1)

What does it mean for a test to succeed?

 Test Oracles define the criteria for a test to succeed
Possible kinds of test oracles

* Function returns the exact “right” answer

* Function returns an acceptable answer

* Returns the same value as last time

* Function returns without crashing

* Function crashes (as expected)

* Function has the right effects on its environment

19

Your module may interact with

———-,———————————————
—

I O e T e e O S e O
S e S S S e S
M M Ma e e e e et a e et et et Sa e e et et e e Ve et Y et et Ve ¥at Vet et et Ve Vet Ve e e Ve Fat Ve e Ve Vel et a e Vet et et e e Ve
-—
P T a0 S - S S - S
S S S S e i S S S S S S S,

Network
Resources

" g F i B B R G B B B B B B B B R B BB B B B B B B R R R BB B B R B B B B B R R B B B B R B B
B R o A L L e O Sy T S S

—
—— ~-* --
-—

LB e e b A e e
= —
S S S e S S
—
L e e A e A e S e e A T S e e 8
Ty m e e m e e e e m e m e s e e m ml e m s
—y

Wy L f f f s s s e e s s s aaaaaawa s

.
Mg e s s e e e o e om ow oe e s s om ow oww
e A b A A e R
O B S e " i s S s ki

—
—
~.~..

Database S,

20

Test doubles replace uncontrollable
thlngs with things that you do control

e e g e e e
- —
—

B ST o s o ol el o ot o oo s b ol oL o e o e o R o oL b ol s o s o e o R o s o o s

. WO B P P P P B B P P B M B P B P M B B e B e e e B B B R B B B R R R R R R R R R
L o o o o T L L U L U L U U U L U U U
L F L E R R R R E R R R R R R F F F R R B M B B B B e e B B B B B R R R R R R R R

-
SO S SRR S 0 SN S S S S S S
R L L L L L L L S L L L L S L S S L S S S S S S S L L A

e e e e e e e M e Y e Y)
Animmniaia sl sl el nl s pl sl e e e el e e -
R A B AR R A T s : :
Y AR S A S S S R ; '
e R T T y :
iy 0 el

e By o0
Resources

Wy g e e e e e e e P e B M B B B B B B T e R T e e e e T e M B R R R T e e B R T B e B R e
B b b L b b b S S S S S S e S S S S S S S
Ry e e e e e M e B e S e e e T e e e R T e e e e T e e e e T e B e R e
—
L L L
—
a7 ' e e et S e e e S e e e e B e P S e M S e B R e S e B e e S R e B e e e T
e s Sk U e o S ok S S oL U s Lt b S S s s el kS kS s e sl s s S S S s e
B B B B B i S)

PO gy ot T a e e e i e et a e e e e e e e e e e e e e e e e
Ty m e e m e e e e m e m e s e e m ml e m s
—y

Wy L f f f s s s e e s s s aaaaaawa s

.
Mg e s s e e e o e om ow oe e s s om ow oww
e A b A A e R
O B S e " i s S s ki

—
—
~.§..

21

Test Doubles Intercept Calls to Methods

* Testing frameworks provide two common abstractions for
doubles.

* In Jest, these are called mocks and spies.

e Other frameworks use terms like "fake" and "stub" for
variants of these.

* You'll find more detail in the tutorial on Unit Testing.
e We'll discuss these in more detail in a later module.

22

CS 4530: Fundamentals of Software Engineering

Module 03.2 Measures of Test Coverage

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

23

https://creativecommons.org/licenses/by-sa/4.0/

When have I written enough tests?

* Hard to verify that your tests cover the whole
specification

* Especially if the specification is only in someone's
head!

* But easier to verify that your tests cover all of your
code.

* This is called "Code Coverage"

* Coverage gives a quantitative measure of how much
of your code is exercised by your tests

* |If the code isn't exercised, it's definitely not tested!

Measures of code coverage

e Statement or Block coverage
* Branch coverage
* Path coverage

25

Statement Coverage

* Each line (or part of) the code should be executed at
least once in the test suite

* Adequacy criterion: each statement must be executed at
least once

Statement Coverage: # executed statements

statements

26

Branch Coverage

* Adequacy criterion: each branch in the control-flow
graph must be executed at least once

coverage: # executed branches
branches

* Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

* Most widely used criterion in industry

27

Tools for measuring coverage

* Coverage is computed automatically while the tests

execute

* jest --coverage
 Makes it easy

calculator/add

v should return a number when parameters
v should return sum of 2" when 1 + 1 1is

calculator/subtract
v should return a number when parameters
v should return sum of "1° when 2 - 1 is

are passed
passed to

are passed
passed to

to “add()’

‘add ()’

to “subtract()’
“subtract()’

4 passing (4ms)

File % Stmts % Branch % Funcs
All files 100 100 100
Add. ts 100 100 100
Subtract.ts 100 100 100

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

28

Executing every branch doesn't mean that

you've executed every behavior

* In this example,
all branches are
covered by the
test

e (1,22) covers
the true
branches

* (0,-10) covers
the false
branches

 BUT: (0,1) makes
this function crash

(1,22)
function magic (x: mber,
let z = 0;
1f (x !'== 0) {=z X +

J

1f (y > 0) {retu

test (V"100% branch coverage", ()

expect (magic (1,
expect (magic (0,

}) s

22)) .toBe (2) ;
-10)) .toBe (0);

(0,1)

=>
//T1
/ /T2

(0,-10)

{

z;} else {retukn x;

29

Code like this will make path coverage hard
to achieve

* n tests might lead to 2*n paths

 Sometimes a fault is only
manifest on a particular path, as
we saw in the preceding example.

* Worse, the number of paths can
be infinite
* E.g., if there is a loop.

* What to do?

Smarter tools can rule out unreachable
paths

* Looks like there might be 4 paths: AC AD BC

BD
f(ELO)) {AQ)} * But maybe not all of these are feasible.
1) * Depends on the details of what's in E1 and
else {B()}; %
1+ (E2 C '
;152 {[()8}{) e Let's say that the path AD leads to an error.

* Crude analysis considers all possibilities.

* Better idea: Is it \oossible for E1() to be true
and E2() to be false?

* Automatic theorem-proving can often show
that this is impossible.

A problem has been detected and windows has been shut down to prevent damage

The Blue Screen JEses

he problem =seems to he caused by the following file: SPCMDCOM. SYS

O f D e a t I I PAGE_FAULT_IM_MNOMPASGED AREA

IT this 15 the first time yw = zeen this S arrar sCcreemn,
restart wour computer. If - Feen appeas ', Tollow

Eliminated by using f==ea

Check to make sure any - aper v installed.

S LA IVI tO O I 2 OO 1 - If this 15 a new install. software manutfacturer
For any wWindows updates wo

IT problems continue, disahle v installed hardware
or software. Disable BIOS memo. as caching or shadowing.

IT ywou need to use Safe Mode ble components, restart
WOLIE Computer, press F8 to 58 tup options, and then
zalect Safe mMode.

echnical information:

-781l7 base at ca000, Datestamp 3deddayc

https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-
software-model-checking-with-slam/fulltext

https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-software-model-checking-with-slam/fulltext
https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-software-model-checking-with-slam/fulltext

problem has been ™ L«) : . meen shut down Lo prevent damage
your computer. o

2 problem seempsel /4 T AERS . TMICON, SYS
y / oY .

5
o
g

E_FAULT_TH_E .

this s th
art your

: 2
4 'y ."'.' ..
oy o 4 L/ -
- 4ot . 74 % "3
=T =1 % e ot R L !
2 STEeps. Y ot e . b
gy L o < ¥ -~ % y 4
BATE 58 Yt 3 " X # 4
') 5
A " v * % %
- Lk -’

. U ' l 4 - 1 1 -1
= - - i 1— ™,
L to m / 2 "o /i Lal led.

n

s ¢ ’ : Rk : Aanutfacturer
LI iy mwwN e

/

< y A l. r N:.
ok’ : : , ¥ 5 ; har cwar e

— 4 2% a0 4 ya Fopniol/ MASSEE ') _ |, , S ==
FT] Y e = zhadowing.
* & ' 4 .5, Festart
., and then
=2 | B2r

echini..

WHHE STOP: Qw00

HEH SprMDiCOM . 5YS - Address

https://www.computerweekly.com/feature/CrowdStrike-
update-chaos-explained-What-you-need-to-know

https://www.computerweekly.com/feature/CrowdStrike-update-chaos-explained-What-you-need-to-know
https://www.computerweekly.com/feature/CrowdStrike-update-chaos-explained-What-you-need-to-know

CS 4530: Fundamentals of Software Engineering

Lesson 3.3 Adversarial Testing

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

34

https://creativecommons.org/licenses/by-sa/4.0/

Adversarial testing is a way of judging
whether you have written enough tests.

* It is helpful to think of adversarial testing as a game
in which you play against an adversary

* |n adversarial testing, the adversary generates a set

of “mutants” — buggy versions of a reference
solution. 35

* You win against the adversary if your tests reject all
of the mutants.

One could, in principle, generate the
mutants by hand

e Strawman - “Seeded Faults”:

* Create N variations of the codebase, each with a
single manually-written defect

* Evaluate the number of defects detected by test
suite

* Test suite is “good” if it finds all of the defects you
thought to introduce.

e But:
 Did we introduce realistic defects?
* Clearly doesn't scale!

36

In mutation testing, the adversary generates
buggy code by making simple changes

// find the first item in the list that 1is

// greater than or equal to the target.

export default function search(list:number[], target:number) {
return list.find((item) => item >= target);

¥

Original code (correct)

// find the first item in the list that 1s

// greater than or equal to the target.

export default function search(list:number[], target:number) {
return list.find((item) => itemtarget);

}

37

Mutated code (buggy)

The Stryker Game: The Opening

Player (You) Opponent (Them)

Your code
A\ N

< > Mutant 1

S
Your tests <

>Mutant 2

<
\< > Mutant 3

The Stryker Game: Result of one round of

play

Player (You)

Your code

Your tests

Opponent (Them)

> Mutant 3

The Stryker Game: Result of one round of

play

Player (You)

Your code

Your tests

Opponent (Them)

> Mutant 3

The Stryker Game: a winning position

Player (You) Opponent (Them)

Your code

Your tests

Hmm, now that you look
closer, you see that

mutant 3 isn't actually a
\< > Mutant 3 bug.

The Stryker Game: a losing position

Player (You)

Your code

Your tests

Opponent (Them)

> Mutant 3

Hmm, mutant #3 really
demonstrates a bug. Time
to strengthen your tests

Remedy: you need to devise tests that
distinguish the original code from the mutants

* Devise a test that your original code will pass, but
the mutant will fail.

A tiny example

Imagine that this is the code to be tested

// find the first item 1n the list that 1is
// greater than or equal to the target.
export default function search(list:number[], target:number)

{

return list.find((item) => item >= target);

and we have written some tests.

Stryker report for this test

[Survived] EqualityOperator
src/for-midterm/adrian.ts:4:32
. return list.find((item) =>
+ return list.find((item) =>
Tests ran:

search should return the first
than or equal to the target

[Survived] ConditionalExpression
src/for-midterm/adrian.ts:4:32
: return list.find((item) =>
+ return list.find((item) =>
Tests ran:

search should return the first
than or equal to the target

item >= target);
item > target);

item in the list that 1s greater

item >= target);
true);

item 1in the list that is greater

Let's look at the second one:

[Survived] ConditionalExpression
src/for-midterm/adrian.ts:4:32

- return list.find((item) => item >= target);
+ return list.find((item) => true);

* This mutant always returns the first element of the list

* Remedy: what if you search for something that is NOT the
first element in the input?

Here's one test that will cause the mutant to
be killed.

test("should return the second element of the 1list", () => {
expect(search([5, 7, 9], 6)).toBe(7);
1)

What about the other mutant?

[Survived] EqualityOperator
src/for-midterm/adrian.ts:4:32

- return list.find((item) => item >= target);
+ return list.find((item) => item > target);

* This mutant returns the first larger element of the list

* Remedy: What if your input list included an “equal” item
before a larger item?

Here's one test that will catch that mutant

test("try target that is equal to some item in the 1list", () => {
expect(search([5, 7, 9], 7)).toBe(7);
1)

Use Mutation Analysis While Writing Tests

* When you feel “done” writing tests, run a mutation
analysis

* Inspect undetected mutants, and try to write tests
that will make those mutants fail.

® Survived (2)
154 T/
133 public overlaps(otherInteractable: InteractableArea): boolean {
134 const toRectPoints = ({ _x, _y, _width, _height }: InteractableArea) => ({ x1: _x
135 const rectl = toRectPoints(this);
136 const rectZ = toRectPoints(otherInteractable);
137 - const noOverlap = rectl.xl >= rectZ2.x2e
- const noOverlap = rectl.xl > rect2.x2
138 |l rect2.x1 >= rectl.x2 || rectl.yl >= rect2.y2 || rect2.yl >= rectl.y2; e
139 return !'noOverlap; T
140 }
141

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs

62 public static fromM.apObjecTc(mapObject: ITiledMapObject, broadcaj ¢ UnfOrtunatE|y, we Can't
63 const { name, width, height } = mapObject; . .
64 if Clwidth [1 theight) {e automatically tell if an
65 - throw new Error("Malformed viewing area ${name}*); "

) o oo N9, 250 e, undetected mutant is a
66 } bug or not
67 const rect: BoundingBox = { x: mapObject.x, y: mapObject.y, | . . .
68 return new ConversationArea({ id: name, occupantsByID: E1 }, ¢ Th|S mUta nt IS benlgn:
> : the specification didn't

require this particular
error message to be
generated.

* Testing for this message
would be brittle

51

Are mutants a Valid Substitute for Real

Faults? Probably yes.

Do mutants really represent real bugs?

* Researchers have studied the question of
whether a test suite that finds more
mutants also finds more real faults

* Conclusion: For the 357 real faults studied,
Ves

* This work has been replicated in many other
contexts, including with real faults from
student code

Are Mutants a Valid Substitute
for Real Faults in Software Testing?

René Just', Darioush Jalali*, Laura Inozemtseva*, Michael D. Ernst’, Reid Holmes*, and Gordon Fraser*

fUniversity of Washington
Seattle, WA, USA
{rjust, darioush, mernst}
@cs.washington.edu

ABSTRACT

A good test suite is one that detects real faults. Because the set
of faults in a program is usually unknowable, this definition is not
useful to practitioners who are creating test suites, nor to researchers
who are creating and evaluating tools that generate test suites. In
place of real faults, testing research often uses mutants, which are
artificial faults — each one a simple syntactic variation — that are
systematically seeded throughout the program under test. Mutation
analysis is appealing because large numbers of mutants can be
automatically-generated and used to compensate for low quantities
or the absence of known real faults.

Unfortunately, there is little experimental evidence to support
the use of mutants as a replacement for real faults. This paper in-
vestigates whether mutants are indeed a valid substitute for real
faults, i.e., whether a test suite’s ability to detect mutants is corre-
lated with its ability to detect real faults that developers have fixed.
Unlike prior studies, these investigations also explicitly consider the
conflating effects of code coverage on the mutant detection rate.

Our experiments used 357 real faults in 5 open-source applica-
tions that comprise a total of 321,000 lines of code. Furthermore,
our experiments used both developer-written and automatically-
generated test suites. The results show a statistically significant
correlation between mutant detection and real fault detection, inde-
pendently of code coverage. The results also give concrete sugges-
tions on how to improve mutation analysis and reveal some inherent
limitations.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation, Measurement

Keywords

Test effectiveness, real faults, mutation analysis, code coverage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...815.00
http://dx.doi.org/10.1145/2635868.2635929

*University of Waterloo

Waterloo, ON, Canada

{Iminozem, rtholmes}
@uwaterloo.ca

*University of Sheffield
Sheffield, UK
gordon.fraser@sheffield.ac.uk

1. INTRODUCTION

Both industrial software developers and software engineering re-
searchers are interested in measuring test suite effectiveness. While
developers want to know whether their test suites have a good chance
of detecting faults, researchers want to be able to compare differ-
ent testing or debugging techniques. Ideally, one would directly
measure the number of faults a test suite can detect in a program.
Unfortunately, the faults in a program are unknown a priori, so a
proxy measurement must be used instead.

A well-established proxy measurement for test suite effective-
ness in testing research is the mutation score, which measures a
test suite’s ability to distinguish a program under test, the origi-
nal version, from many small syntactic variations, called mutants.
Specifically, the mutation score is the percentage of mutants that
a test suite can distinguish from the original version. Mutants
are created by systematically injecting small artificial faults into
the program under test, using well-defined mutation operators.
Examples of such mutation operators are replacing arithmetic or
relational operators, modifying branch conditions, or deleting state-
ments (cf. [18]).

Mutation analysis is often used in software testing and debugging

research. More concretely, it is commonly used in the following use
cases (e.g., [3,13,18,19,35,37-39]):
Test suite evaluation The most common use of mutation analysis
is to evaluate and compare (generated) test suites. Generally, a test
suite that has a higher mutation score is assumed to detect more real
faults than a test suite that has a lower mutation score.

Test suite selection Suppose two unrelated test suites 77 and T,
exist that have the same mutation score and |7| < |Z,|. In the
context of test suite selection, 7} is a preferable test suite as it has
fewer tests than T, but the same mutation score.

Test suite minimization A mutation-based test suite minimiza-
tion approach reduces a test suite T to T \ {#} forevery testz € T
for which removing t does not decrease the mutation score of T'.

Test suite generation A mutation-based test generation (or aug-
mentation) approach aims at generating a test suite with a high mu-
tation score. In this context, a test generation approach augments a
test suite T with a test ¢ only if ¢ increases the mutation score of T .

Fault localization A fault localization technique that precisely
identifies the root cause of an artificial fault, i.e., the mutated code
location, is assumed to also be effective for real faults.

These uses of mutation analysis rely on the assumption that mu-
tants are a valid substitute for real faults. Unfortunately, there is little
experimental evidence supporting this assumption, as discussed in
greater detail in Section 4. To the best of our knowledge, only three
previous studies have explored the relationship between mutants and

o Y4

Activity: Improving a test suite

* Enhance the test suite of the transcript server to
improve line coverage and mutation coverage

* Download from Module 03 webpage

53

Review

* Now that you have come to the end of this lesson,
yvou should be able to:
* Explain different reasons why you might want to test

* Design a TDD test suite by identifying equivalence classes
of inputs

* Explain the following measures of code coverage, and how
they differ:

e Statement or line coverage
* Branch coverage
* Path coverage

* Use mutation testing to judge the completeness of a test
suite

	CS 4530: Fundamentals of Software Engineering��Module 03: Test Adequacy
	Slide Number 2
	Module Outline
	Learning Objectives for this Module
	Why do we test?
	CS 4530: Fundamentals of Software Engineering��Lesson 3.1 Writing tests for TDD
	What makes for a good test (suite)?
	Building Tests from Specifications (TDD)
	Building Test Suites From Specifications (TDD)
	Example: Zip Code Lookup (1)
	Zip Code Lookup (2): Need to test all feasible inputs
	What does "all possible inputs" mean?
	Cases for looking something up in a list
	Example:
	Example: TicTacToe
	Make sure you've covered the edge cases
	But don't make unwarranted assumptions about the specification
	Example: Is this particular error message required, or is it incidental?
	What does it mean for a test to succeed?
	Your module may interact with uncontrollable things in the environment
	Test doubles replace uncontrollable things with things that you do control
	Test Doubles Intercept Calls to Methods
	CS 4530: Fundamentals of Software Engineering��Module 03.2 Measures of Test Coverage
	When have I written enough tests?
	Measures of code coverage
	Statement Coverage
	Branch Coverage
	Tools for measuring coverage
	Executing every branch doesn't mean that you've executed every behavior
	Code like this will make path coverage hard to achieve
	Smarter tools can rule out unreachable paths
	The Blue Screen of Death
	The Blue Screen of Death
	CS 4530: Fundamentals of Software Engineering��Lesson 3.3 Adversarial Testing
	Adversarial testing is a way of judging whether you have written enough tests.
	One could, in principle, generate the mutants by hand
	In mutation testing, the adversary generates buggy code by making simple changes
	The Stryker Game: The Opening
	The Stryker Game: Result of one round of play
	The Stryker Game: Result of one round of play
	The Stryker Game: a winning position
	The Stryker Game: a losing position
	Remedy: you need to devise tests that distinguish the original code from the mutants
	A tiny example
	Stryker report for this test
	Let's look at the second one:
	Here's one test that will cause the mutant to be killed.
	What about the other mutant?
	Here's one test that will catch that mutant
	Use Mutation Analysis While Writing Tests
	Undetected Mutants May Not Be Bugs
	Are mutants a Valid Substitute for Real Faults? Probably yes.
	Activity: improving a test suite
	Review

