
CS 4530: Fundamentals of Software Engineering

Module 03: Test Adequacy

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

When have I written
enough tests?

Module Outline
• Lesson 3.1 Writing tests for TDD
• Lesson 3.2 Assessing Test Coverage
• Lesson 3.3 Adversarial Coverage Testing

Learning Objectives for this Module
• By the end of this lesson, you should be able to:

• Explain different reasons why you might want to test
• Design a TDD test suite by identifying equivalence classes

of inputs
• Explain the following measures of code coverage, and how

they differ:
• Statement or line coverage
• Branch coverage
• Path coverage

• Use mutation testing to judge the completeness of a test
suite

4

Why do we test?
• Test Driven Development

• Does the SUT satisfy its specification?
• “Good” test suite exercises the entire specification

• Regression Testing
• Did something change since some previous version?
• Prevent bugs from (re-)entering during maintenance.
• “Good” test suite detects bugs that we introduce in code

• Acceptance Testing
• Does the SUT satisfy the customer
• “Good” test suite answers: Are we building the right system ?

5

CS 4530: Fundamentals of Software Engineering

Lesson 3.1 Writing tests for TDD

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

6

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

What makes for a good test (suite)?
• Desirable properties of test suites:

• Find bugs
• Run automatically
• Are relatively cheap to run
• Don't depend on the order of tests.

• Desirable properties of individual tests:
• Understandable and debuggable
• No false alarms (not “flaky”)

7

Related Terminology:
“test smells”

Building Tests from Specifications
(TDD)

• The real specification is often implicit.
• When delivering a feature, it is important to deliver tests to

ensure that the feature keeps working this way in the future
• You may have specific domain knowledge that future

developers who touch the code do not
• Specifications are hard to interpret and check, automated

tests are easy
• Beyoncé rule: “If you liked it you should have put a ring test

on it” (SoftEng @ Google)

8

Building Test Suites From Specifications (TDD)
• First task is to enumerate the different classes of behaviors in the

specification.
• Example:

• Requesting the transcript for a student ID.
• Two cases:

• The ID belongs to a student
• The ID is not the ID of any student

• The SUT should work similarly for all inputs in each case.

9

These cases are sometimes
called "equivalence classes"
of inputs.

Example: Zip Code Lookup (1)
• USPS ZIP code lookup tool accepts a zip code

as input, and outputs:
• The “place names” that correspond to that

ZIP code, or
• “Invalid zip code”

• Strategy:
• Determine the input equivalence classes,

boundary conditions
• Write tests for those inputs

10

Zip Code Lookup (2): Need to test all feasible
inputs
• Need to test behavior when the input is:

• Not a 5 digit number
• A 5 digit numbers

• A valid ZIP code
• With one place name
• With multiple place names

• Not a valid ZIP code
• Test at least one input from each class, plus boundaries

(e.g. 4 digit numbers, 6 digit numbers, no numbers)
• Encode the expected output of the system for each test

11

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

What does "all possible inputs" mean?
• Should we also test with non-numeric

inputs? With an empty input? With an input
that isn't even a string?

• Do we have to worry about the database
going down?

• All this depends on what we can assume
about the system in which the lookup tool is
embedded.

12

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

Cases for looking something up in a list
1. The list is empty
2. The thing you want is not in the list
3. The thing you want is the first thing in the list
4. The thing you want is the last thing in the list
5. The thing you want is in the middle of the list

Example:
// find the first item in the list that is
// greater than or equal to the target.
// throw an error if none.
export default function search(list:number[], target:number) {

// NEED TO TEST WHAT GOES HERE
}

1. The list is empty
2. The thing you want is not in the list
3. The thing you want is the first thing in the list
4. The thing you want is the last thing in the list
5. The thing you want is in the middle of the list

Example: TicTacToe
• What are the possible states of a tictactoe game?

• Board is full (draw)
• Board is not full

• Board not full, one player has won
• Board not full, your turn
• Board not full, the other person's turn

• What are the possible inputs to the tictactoe game?
• You move
• The other player moves
• Someone else tries to move
• One of the players leaves the game

Make sure you've covered the edge cases
• Test at and near boundaries

• Barely legal, barely illegal inputs
• Less-than or less-than-or-equal?
• Empty inputs?

• Integer overflows / buffer overflows
• Example: ComAir crew scheduling

• problem due to a list getting more than 32767
elements

• https://arstechnica.com/uncategorized/2004/12/449
0-2/

16

https://arstechnica.com/uncategorized/2004/12/4490-2/
https://arstechnica.com/uncategorized/2004/12/4490-2/

But don't make unwarranted assumptions
about the specification
• Specifications often leave room for undefined behaviors: details

that are subject to change
• Brittle tests are tests that will fail unexpectedly if that

undefined behavior changes

• Example: Imagine if specification for our Transcript database did
not say anything about adding students with same names.

17

Example: Is this particular error message
required, or is it incidental?

test("should throw an error if no such item", () => {
const list = [1, 2, 3];
const target = 4;
expect(search(list, target)).toThrowError("No such item");

});

What does it mean for a test to succeed?
• Test Oracles define the criteria for a test to succeed

Possible kinds of test oracles
• Function returns the exact “right” answer
• Function returns an acceptable answer
• Returns the same value as last time
• Function returns without crashing
• Function crashes (as expected)
• Function has the right effects on its environment

19

Mo

Your module may interact with
uncontrollable things in the environment

20

Network
Resources

Database

The SUT

Human User

Mo

Test doubles replace uncontrollable
things with things that you do control

21

Network
Resources

Database

The SUT

Human User

Test Doubles Intercept Calls to Methods
• Testing frameworks provide two common abstractions for

doubles.
• In Jest, these are called mocks and spies.
• Other frameworks use terms like "fake" and "stub" for

variants of these.
• You'll find more detail in the tutorial on Unit Testing.
• We'll discuss these in more detail in a later module.

22

CS 4530: Fundamentals of Software Engineering

Module 03.2 Measures of Test Coverage

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

23

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

When have I written enough tests?
• Hard to verify that your tests cover the whole

specification
• Especially if the specification is only in someone's

head!
• But easier to verify that your tests cover all of your

code.
• This is called "Code Coverage"
• Coverage gives a quantitative measure of how much

of your code is exercised by your tests
• If the code isn't exercised, it's definitely not tested!

Measures of code coverage
• Statement or Block coverage
• Branch coverage
• Path coverage

25

Statement Coverage
• Each line (or part of) the code should be executed at

least once in the test suite
• Adequacy criterion: each statement must be executed at

least once

26

Statement Coverage: # executed statements
statements

Branch Coverage
• Adequacy criterion: each branch in the control-flow

graph must be executed at least once
coverage: # executed branches

 # branches

• Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

• Most widely used criterion in industry

27

Tools for measuring coverage
• Coverage is computed automatically while the tests

execute
• jest --coverage

• Makes it easy

28

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

Executing every branch doesn't mean that
you've executed every behavior
• In this example,

all branches are
covered by the
test
• (1,22) covers

the true
branches

• (0,-10) covers
the false
branches

• BUT: (0,1) makes
this function crash

29

function magic(x: number, y: number) {
 let z = 0;
 if (x !== 0) {z = x + 10;} else {z = 0;}

 if (y > 0) {return y / z;} else {return x;}
}
test(“100% branch coverage", () => {
 expect(magic(1, 22)).toBe(2); //T1
 expect(magic(0, -10)).toBe(0); //T2
});

(1,22) (0,-10)(0,1)

Code like this will make path coverage hard
to achieve

• n tests might lead to 2^n paths
• Sometimes a fault is only

manifest on a particular path, as
we saw in the preceding example.

• Worse, the number of paths can
be infinite
• E.g., if there is a loop.

• What to do?

Smarter tools can rule out unreachable
paths

• Looks like there might be 4 paths: AC AD BC
BD

• But maybe not all of these are feasible.
• Depends on the details of what's in E1 and

E2.
• Let's say that the path AD leads to an error.
• Crude analysis considers all possibilities.
• Better idea: Is it possible for E1() to be true

and E2() to be false?
• Automatic theorem-proving can often show

that this is impossible.

if (E1()) {A()}
else {B()};
if (E2()) {C()}
else {D()}

The Blue Screen
of Death
Eliminated by using
SLAM tool (2001-
2011)

https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-
software-model-checking-with-slam/fulltext

https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-software-model-checking-with-slam/fulltext
https://cacm.acm.org/magazines/2011/7/109893-a-decade-of-software-model-checking-with-slam/fulltext

The Blue Screen
of Death
Eliminated by using
SLAM tool (2001-
2011)

https://www.computerweekly.com/feature/CrowdStrike-
update-chaos-explained-What-you-need-to-know

https://www.computerweekly.com/feature/CrowdStrike-update-chaos-explained-What-you-need-to-know
https://www.computerweekly.com/feature/CrowdStrike-update-chaos-explained-What-you-need-to-know

CS 4530: Fundamentals of Software Engineering

Lesson 3.3 Adversarial Testing

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

34

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Adversarial testing is a way of judging
whether you have written enough tests.
• It is helpful to think of adversarial testing as a game

in which you play against an adversary
• In adversarial testing, the adversary generates a set

of “mutants” – buggy versions of a reference
solution.

• You win against the adversary if your tests reject all
of the mutants.

35

One could, in principle, generate the
mutants by hand
• Strawman - “Seeded Faults”:

• Create N variations of the codebase, each with a
single manually-written defect

• Evaluate the number of defects detected by test
suite

• Test suite is “good” if it finds all of the defects you
thought to introduce.

• But:
• Did we introduce realistic defects?
• Clearly doesn't scale!

36

In mutation testing, the adversary generates
buggy code by making simple changes

37

// find the first item in the list that is
// greater than or equal to the target.
export default function search(list:number[], target:number) {

return list.find((item) => item >= target);
}

Original code (correct)

Mutated code (buggy)

// find the first item in the list that is
// greater than or equal to the target.
export default function search(list:number[], target:number) {

return list.find((item) => item > target);
}

The Stryker Game: The Opening

38

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: Result of one round of
play

39

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: Result of one round of
play

40

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: a winning position

41

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

Hmm, now that you look
closer, you see that
mutant 3 isn't actually a
bug.

The Stryker Game: a losing position

42

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

Hmm, mutant #3 really
demonstrates a bug. Time
to strengthen your tests

Remedy: you need to devise tests that
distinguish the original code from the mutants
• Devise a test that your original code will pass, but

the mutant will fail.

43

A tiny example
Imagine that this is the code to be tested

// find the first item in the list that is
// greater than or equal to the target.
export default function search(list:number[], target:number)
{

return list.find((item) => item >= target);
}

and we have written some tests.

Stryker report for this test
[Survived] EqualityOperator
src/for-midterm/adrian.ts:4:32
- return list.find((item) => item >= target);
+ return list.find((item) => item > target);
Tests ran:

search should return the first item in the list that is greater
than or equal to the target

[Survived] ConditionalExpression
src/for-midterm/adrian.ts:4:32
- return list.find((item) => item >= target);
+ return list.find((item) => true);
Tests ran:

search should return the first item in the list that is greater
than or equal to the target

Let's look at the second one:

[Survived] ConditionalExpression
src/for-midterm/adrian.ts:4:32
- return list.find((item) => item >= target);
+ return list.find((item) => true);

• This mutant always returns the first element of the list
• Remedy: what if you search for something that is NOT the

first element in the input?

Here's one test that will cause the mutant to
be killed.

test("should return the second element of the list", () => {
expect(search([5, 7, 9], 6)).toBe(7);

});

What about the other mutant?

[Survived] EqualityOperator
src/for-midterm/adrian.ts:4:32
- return list.find((item) => item >= target);
+ return list.find((item) => item > target);

• This mutant returns the first larger element of the list
• Remedy: What if your input list included an “equal” item

before a larger item?

Here's one test that will catch that mutant

test("try target that is equal to some item in the list", () => {
expect(search([5, 7, 9], 7)).toBe(7);

});

Use Mutation Analysis While Writing Tests
• When you feel “done” writing tests, run a mutation

analysis
• Inspect undetected mutants, and try to write tests

that will make those mutants fail.

50

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs
• Unfortunately, we can't

automatically tell if an
undetected mutant is a
bug or not

• This mutant is benign:
the specification didn't
require this particular
error message to be
generated.

• Testing for this message
would be brittle

51

Are mutants a Valid Substitute for Real
Faults? Probably yes.
• Do mutants really represent real bugs?
• Researchers have studied the question of

whether a test suite that finds more
mutants also finds more real faults

• Conclusion: For the 357 real faults studied,
yes

• This work has been replicated in many other
contexts, including with real faults from
student code

52

Activity: improving a test suite
• Enhance the test suite of the transcript server to

improve line coverage and mutation coverage
• Download from Module 03 webpage

53

Review
• Now that you have come to the end of this lesson,

you should be able to:
• Explain different reasons why you might want to test
• Design a TDD test suite by identifying equivalence classes

of inputs
• Explain the following measures of code coverage, and how

they differ:
• Statement or line coverage
• Branch coverage
• Path coverage

• Use mutation testing to judge the completeness of a test
suite

54

	CS 4530: Fundamentals of Software Engineering��Module 03: Test Adequacy
	Slide Number 2
	Module Outline
	Learning Objectives for this Module
	Why do we test?
	CS 4530: Fundamentals of Software Engineering��Lesson 3.1 Writing tests for TDD
	What makes for a good test (suite)?
	Building Tests from Specifications (TDD)
	Building Test Suites From Specifications (TDD)
	Example: Zip Code Lookup (1)
	Zip Code Lookup (2): Need to test all feasible inputs
	What does "all possible inputs" mean?
	Cases for looking something up in a list
	Example:
	Example: TicTacToe
	Make sure you've covered the edge cases
	But don't make unwarranted assumptions about the specification
	Example: Is this particular error message required, or is it incidental?
	What does it mean for a test to succeed?
	Your module may interact with uncontrollable things in the environment
	Test doubles replace uncontrollable things with things that you do control
	Test Doubles Intercept Calls to Methods
	CS 4530: Fundamentals of Software Engineering��Module 03.2 Measures of Test Coverage
	When have I written enough tests?
	Measures of code coverage
	Statement Coverage
	Branch Coverage
	Tools for measuring coverage
	Executing every branch doesn't mean that you've executed every behavior
	Code like this will make path coverage hard to achieve
	Smarter tools can rule out unreachable paths
	The Blue Screen of Death
	The Blue Screen of Death
	CS 4530: Fundamentals of Software Engineering��Lesson 3.3 Adversarial Testing
	Adversarial testing is a way of judging whether you have written enough tests.
	One could, in principle, generate the mutants by hand
	In mutation testing, the adversary generates buggy code by making simple changes
	The Stryker Game: The Opening
	The Stryker Game: Result of one round of play
	The Stryker Game: Result of one round of play
	The Stryker Game: a winning position
	The Stryker Game: a losing position
	Remedy: you need to devise tests that distinguish the original code from the mutants
	A tiny example
	Stryker report for this test
	Let's look at the second one:
	Here's one test that will cause the mutant to be killed.
	What about the other mutant?
	Here's one test that will catch that mutant
	Use Mutation Analysis While Writing Tests
	Undetected Mutants May Not Be Bugs
	Are mutants a Valid Substitute for Real Faults? Probably yes.
	Activity: improving a test suite
	Review

